43 research outputs found

    Practical Parallel External Memory Algorithms via Simulation of Parallel Algorithms

    Full text link
    This thesis introduces PEMS2, an improvement to PEMS (Parallel External Memory System). PEMS executes Bulk-Synchronous Parallel (BSP) algorithms in an External Memory (EM) context, enabling computation with very large data sets which exceed the size of main memory. Many parallel algorithms have been designed and implemented for Bulk-Synchronous Parallel models of computation. Such algorithms generally assume that the entire data set is stored in main memory at once. PEMS overcomes this limitation without requiring any modification to the algorithm by using disk space as memory for additional "virtual processors". Previous work has shown this to be a promising approach which scales well as computational resources (i.e. processors and disks) are added. However, the technique incurs significant overhead when compared with purpose-built EM algorithms. PEMS2 introduces refinements to the simulation process intended to reduce this overhead as well as the amount of disk space required to run the simulation. New functionality is also introduced, including asynchronous I/O and support for multi-core processors. Experimental results show that these changes significantly improve the runtime of the simulation. PEMS2 narrows the performance gap between simulated BSP algorithms and their hand-crafted EM counterparts, providing a practical system for using BSP algorithms with data sets which exceed the size of RAM

    A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf

    Get PDF
    Climate change and decadal variability are impacting marine fish and invertebrate species worldwide and these impacts will continue for the foreseeable future. Quantitative approaches have been developed to examine climate impacts on productivity, abundance, and distribution of various marine fish and invertebrate species. However, it is difficult to apply these approaches to large numbers of species owing to the lack of mechanistic understanding sufficient for quantitative analyses, as well as the lack of scientific infrastructure to support these more detailed studies. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species with existing information. These methods combine the exposure of a species to a stressor (climate change and decadal variability) and the sensitivity of species to the stressor. These two components are then combined to estimate an overall vulnerability. Quantitative data are used when available, but qualitative information and expert opinion are used when quantitative data is lacking. Here we conduct a climate vulnerability assessment on 82 fish and invertebrate species in the Northeast U.S. Shelf including exploited, forage, and protected species. We define climate vulnerability as the extent to which abundance or productivity of a species in the region could be impacted by climate change and decadal variability. We find that the overall climate vulnerability is high to very high for approximately half the species assessed; diadromous and benthic invertebrate species exhibit the greatest vulnerability. In addition, the majority of species included in the assessment have a high potential for a change in distribution in response to projected changes in climate. Negative effects of climate change are expected for approximately half of the species assessed, but some species are expected to be positively affected (e.g., increase in productivity or move into the region). These results will inform research and management activities related to understanding and adapting marine fisheries management and conservation to climate change and decadal variability

    Inference of development activities from interaction with uninstrumented applications

    Get PDF
    Studying developers’ behavior in software development tasks is crucial for designing effective techniques and tools to support developers’ daily work. In modern software development, developers frequently use different applications including IDEs, Web Browsers, documentation software (such as Office Word, Excel, and PDF applications), and other tools to complete their tasks. This creates significant challenges in collecting and analyzing developers’ behavior data. Researchers usually instrument the software tools to log developers’ behavior for further studies. This is feasible for studies on development activities using specific software tools. However, instrumenting all software tools commonly used in real work settings is difficult and requires significant human effort. Furthermore, the collected behavior data consist of low-level and fine-grained event sequences, which must be abstracted into high-level development activities for further analysis. This abstraction is often performed manually or based on simple heuristics. In this paper, we propose an approach to address the above two challenges in collecting and analyzing developers’ behavior data. First, we use our ActivitySpace framework to improve the generalizability of the data collection. ActivitySpace uses operating-system level instrumentation to track developer interactions with a wide range of applications in real work settings. Secondly, we use a machine learning approach to reduce the human effort to abstract low-level behavior data. Specifically, considering the sequential nature of the interaction data, we propose a Condition Random Field (CRF) based approach to segment and label the developers’ low-level actions into a set of basic, yet meaningful development activities. To validate the generalizability of the proposed data collection approach, we deploy the ActivitySpace framework in an industry partner’s company and collect the real working data from ten professional developers’ one-week work in three actual software projects. The experiment with the collected data confirms that with initial human-labeled training data, the CRF model can be trained to infer development activities from low-level actions with reasonable accuracy within and across developers and software projects. This suggests that the machine learning approach is promising in reducing the human efforts required for behavior data analysis.This work was partially supported by NSFC Program (No. 61602403 and 61572426)

    Trends in outpatient and inpatient visits for separate ambulatory-care-sensitive conditions during the first year of the COVID-19 pandemic: a province-based study

    Get PDF
    BackgroundThe COVID-19 pandemic led to global disruptions in non-urgent health services, affecting health outcomes of individuals with ambulatory-care-sensitive conditions (ACSCs).MethodsWe conducted a province-based study using Ontario health administrative data (Canada) to determine trends in outpatient visits and hospitalization rates (per 100,000 people) in the general adult population for seven ACSCs during the first pandemic year (March 2020–March 2021) compared to previous years (2016–2019), and how disruption in outpatient visits related to acute care use. ACSCs considered were chronic obstructive pulmonary disease (COPD), asthma, angina, congestive heart failure (CHF), hypertension, diabetes, and epilepsy. We used time series auto-regressive integrated moving-average models to compare observed versus projected rates.ResultsFollowing an initial reduction (March–May 2020) in all types of visits, primary care outpatient visits (combined in-person and virtual) returned to pre-pandemic levels for asthma, angina, hypertension, and diabetes, remained below pre-pandemic levels for COPD, and rose above pre-pandemic levels for CHF (104.8 vs. 96.4, 95% CI: 89.4–104.0) and epilepsy (29.6 vs. 24.7, 95% CI: 22.1–27.5) by the end of the first pandemic year. Specialty visits returned to pre-pandemic levels for COPD, angina, CHF, hypertension, and diabetes, but remained above pre-pandemic levels for asthma (95.4 vs. 79.5, 95% CI: 70.7–89.5) and epilepsy (53.3 vs. 45.6, 95% CI: 41.2–50.5), by the end of the year. Virtual visit rates increased for all ACSCs. Among ACSCs, reductions in hospitalizations were most pronounced for COPD and asthma. CHF-related hospitalizations also decreased, albeit to a lesser extent. For angina, hypertension, diabetes, and epilepsy, hospitalization rates reduced initially, but returned to pre-pandemic levels by the end of the year.ConclusionThis study demonstrated variation in outpatient visit trends for different ACSCs in the first pandemic year. No outpatient visit trends resulted in increased hospitalizations for any ACSC; however, reductions in rates of asthma, COPD, and CHF hospitalizations persisted

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & NemĂ©sio 2007; Donegan 2008, 2009; NemĂ©sio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Circadian Clocks as Modulators of Metabolic Comorbidity in Psychiatric Disorders

    Full text link
    corecore